Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Med Mushrooms ; 26(1): 45-53, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38305261

RESUMO

The antiviral activity of aqueous and ethanol extracts from the fruiting bodies of gasteroid Basidiomy-cetes of Western Siberia: Lycoperdon pyriforme, Lycoperdon perlatum, and Phallus impudicus, as well as an aqueous extract from cultivated mycelium of P. impudicus and total polysaccharides from it, on MDCK cell culture against influenza A virus, was studied. Aqueous and ethanol extracts from the fruiting bodies of all studied gasteroid fungi showed antiviral activity against human influenza virus A/Aichi/2/68 (H3N2) and bird A/chicken/Kurgan/05/2005 virus (H5N1). At the same time, extracts from P. impudicus and L. pyriforme showed more pronouncing antiviral activity compared to the activity of the reference drug Tamiflu against the A/H5N1 avian influenza virus. A high antiviral efficacy of an aqueous extract from cultivated mycelium of the P. impudicus and a sample of total polysaccharides from this extract against the A/H5N1 avian influenza virus was revealed.


Assuntos
Agaricales , Virus da Influenza A Subtipo H5N1 , Animais , Humanos , Antivirais/farmacologia , Sibéria , Vírus da Influenza A Subtipo H3N2 , Etanol , Polissacarídeos/farmacologia
2.
Int J Antimicrob Agents ; 46(1): 125-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25963340

RESUMO

Influenza is a heavy socially significant viral infection that affects humans, birds, and wild and domestic animals. The threat of existing and new highly pathogenic subtypes of influenza A virus (IAV) makes it necessary to develop an effective drug that may affect different IAV strains. For this purpose, oligodeoxynucleotides (DNA fragments) attached to titanium dioxide (TiO2) nanoparticles through a polylysine linker, forming TiO2·PL-DNA nanocomposites, that penetrated into cells without transfection agents were used. For the first time, efficient (≥99.9%) suppression of the reproduction of different subtypes of IAV, including highly pathogenic H5N1 and H1N1, was achieved. These results were obtained using the TiO2·PL-DNA nanocomposite bearing a single antisense oligodeoxynucleotide (0.1µM) targeted to the conserved 3'-noncoding region of RNA segment 5, which is common to all tested strains. Very efficient suppression of the reproduction of different subtypes of IAV was probably achieved due to the use of the proposed delivery system for oligonucleotides in the form of the TiO2·PL-DNA nanocomposites. These results indicate the possibility of creating an efficient drug to affect existing and newly emerging pathogenic IAV strains.


Assuntos
Antivirais/metabolismo , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Oligodesoxirribonucleotídeos Antissenso/genética , Oligodesoxirribonucleotídeos Antissenso/metabolismo , Replicação Viral/efeitos dos fármacos , Animais , Técnicas de Cultura de Células , Cães , Portadores de Fármacos/metabolismo , Vírus da Influenza A Subtipo H1N1/fisiologia , Virus da Influenza A Subtipo H5N1/fisiologia , Células Madin Darby de Rim Canino , Nanopartículas/metabolismo , Titânio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...